Paper Reference(s) 4PH1/2P

Pearson Edexcel International GCSE (9–1)

Physics Paper: 2P

Formulae Booklet

DO NOT RETURN THIS FORMULAE BOOKLET WITH THE QUESTION PAPER.

Y67161A

You may find the following formulae useful.

energy transferred =
current × voltage × time
$$E = I \times V \times t$$

frequency = $\frac{1}{time \text{ period}}$ $f = \frac{1}{T}$
power = $\frac{\text{work done}}{\text{time taken}}$ $P = \frac{W}{t}$
power = $\frac{\text{energy transferred}}{\text{time taken}}$ $P = \frac{W}{t}$
orbital speed =
 $\frac{2\pi \times \text{orbital radius}}{\text{time period}}$ $v = \frac{2 \times \pi \times r}{T}$
(final speed)² = (initial speed)² +
(2 × acceleration × distance moved)
 $v^2 = u^2 + (2 \times a \times s)^2$

(continued on the next page)

Turn over

2

pressure × volume = constant	
	$\mathbf{p}_1 \times \mathbf{V}_1 = \mathbf{p}_2 \times \mathbf{V}_2$
pressure temperature = constant	$\frac{p_1}{T_1} = \frac{p_2}{T_2}$
force = $\frac{momentum}{time taken}$	F = <u>(mv – mu)</u> t
change of wavelength wavelength	velocity of a galaxy speed of light
	$\frac{\lambda - \lambda_0}{\lambda_0} = \frac{\Delta \lambda}{\lambda_0} = \frac{\mathbf{v}}{\mathbf{c}}$

change in thermal energy = mass × specific heat capacity × change in temperature

 $\Delta \mathbf{Q} = \mathbf{m} \times \mathbf{c} \times \Delta \mathbf{T}$

Where necessary, assume the acceleration of free fall, $g = 10 \text{ m/s}^2$.